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MUZZLE FLOW 
IN THE  PRESENCE OF AN ANTI-RECOIL  PLATE 

Exploratory study 

I.   Introduction 

We have explored the possibility of determining the ef- 
fect of an anti-recoil plate on the muzzle blast flow, by a 
numerical analysis. To reduce the problem to its essential 
elements, we assumed that the blast was produced by a piston 
moving inside the gun, as it is in the precursor flow, and we did 

not consider the presence of the projectile and of hot gases in 
its back. The anti-recoil plate was considered as a rigid, unpi- 
erced wall, extending to infinity and normal to the gun axis. 

Initial conditions were taken as in our previous calculations of 

precursor flows (Ref. 1). We assume that the reader is familiar 
with Ref.   1  and  we use the  same nomenclature used  therein. 

The analysis, as detailed below, intended to examine 
whether it would be possible to use the existing code for the 
calculation of precursor  flows, with some minor modifications. 

II.  First  attempt 

A first attempt was made using the original code for the 
numerical analysis of the precursor flow in the absence of the 

projectile, with just one minor modification. 

The original program computes the flow between the gun 
and the precursor wave, considered as the outer boundary of the 
region to be computed. Boundary conditions on the precursor wave 

are the Rankine-Hugoniot conditions for a shock proceeding into a 
gas at rest.    The region external  to the    gun    barrel    is    mapped 



First attempt 

onto the region external  to    the    unit    circle    in    an    auxiliary 
plane.       The    mapping    is conformal;   points in the physical  plane 
are defined by a complex variable,  z =  x +  iy,  and  points in    the 

io auxiliary plane are defined by a complex variable, (,   = pe    .    The 
two complex variables are related by the analytic transformation: 

z  =   (ro/Tr)[(z2-  1/z^)/2 -  log  z^ -  iir] 

v U 
*    +  1/z1   =26(5  +   I/O 

where r is the outer radius of the barrel, and B is determined 
to assure correspondence between c=1 and z=-i. Lines of constant 
p and constant e are mapped onto the grid shown in Fig. 1. The 
image of the precursor wave on the ^-plane is defined by a func- 
tion, p=c(8,t) and it turns out to be an almost perfect circle. 
Nevertheless, a normalization of coordinates along each e = con- 
stant line is necessary, in order to maintain evenly spaced mesh 
points along such lines in the computational space. In practice, 
thus, the grid in the physical plane is not perfectly orthogonal, 
although its departure from orthogonality is not conspicuous. 
Anytime a non-orthogonal mesh is used, additional terms appear in 
the equations of motion, which impair the accuracy of the calcu- 
lation. In the precursor flow analysis, however, such effects 
are minimal. Inserting a plate, normal to the gun axis, at a 
given distance from the muzzle, simply means that all points on 
the outer boundary in the c-plane which fall behind the image of 
the plate must be replaced by boundary points on the image of the 
plate itself, corresponding to the same values of 6. At such 
points, not the Rankine-Hugoniot conditions but the well-known 
boundary conditions on a rigid wall will be applied. In princi- 
ple, no ether modifications to the code are necessary, since the 
distribution of interior points follows automatically as a conse- 
quence of normalizing the computational coordinate X between the 
muzzle and  the outer boundary,  whichever  is. 

In practice, one finds that the grid, so defined, is not 
suited for the calculation and will generate catastrophic inaccu- 
racies. 

Our statement is supported and clarified by Figs. 2, 3 
and 4, which show the computational grid in the physical space at 
three successive instants of time.    The progressive    degeneration 
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first attempt 

of the grid, produced by the different normalization between pre- 
cursor wave points and wall points, is evident. While at most of 
the points the grid is almost orthogonal, the departure from 
orthogonality is too strong to be acceptable along at least three 
Y=constant lines. There, the calculation rapidly degenerates and 
stops. 

Nevertheless, the code shows its capacity to describe the 
flow, once a proper grid is adopted. In fact, one can see in 
Fig. 4 two lines representing two imbedded shocks which result as 
a consequence of the impact of the precursor flow on the plate. 
The fact that the shock appears to be divided in two pieces is a 
consequence of the assumption, implicit in the code, that the im- 
bedded shocks are always in the general direction of p=constant 
lines; whenever a portion of a shock tends to lie along 
ti = constant lines, as it would occur between the two shocks of 
Fig.   1 if one joined  them, that portion  is automatically cut off. 

From the experiments described  above, we concluded: 

1) A more efficient method of grid generation is needed, 
and 

2) A more general  analysis of imbedded  shocks is needed. 

III.   Second  attempt 

A second attempt was then made, after modifying the com- 
putational grid. The computational region corresponding to the 
original grid is a rectangle, limited by the lines: X=0 (barrel 
mouth), X=1 (precursor wave), Y=0 (barrel wall), and y=iT/2 (cen- 
terline). In this attempt, the centerline of the flow (the axis 
of the gun) and the plate are taken as two parts of the same 
boundary line in the (Xfy)-plane (the Y=ir/2 line). To this ef- 
fect, the mapping of the z-plane onto the C-plane is modified as 
follows. The variable z of Eqs. (22) of Ref. 1 (repeated here as 
Eqs. (1)) is renamed z^ to obtain z, the following additional 
sequence of transformations is used: 



Second  attempt 

zAr2 * 4x2) 3    o w 2 z..  = - —^  + x 
4 Z„   -   K w 

z5  =   ^4) • z =   xw " z5 

where x is the distance between the muzzle and the plate, and ie 
w 

is a constant, determined in such a way that the imaginary part 

of the complex coordinate of the inner lip of the muzzle in the 

z,-plane is -i. The successive transformations are described by 

Fig. 5. 

The scope of the transformation between the z-plane and 

the z.-plane is to align the plate (AB) with the centerline (FA). 
Consequently, the FD line and the DE line become parabolas. As- 
suming that the arc FCD on the z^-plane can be considered as a 
circular arc, the bilinear transformation between the z^-plane 

and the z_-plane straightens up the FCD line again, without chan- 
ging the shape of the FAB straight line. Finally, the original 

transformation between the z -plane and the ^-plane produces a 
computational region in the C-plane which is very similar to the 
circular sector of Ref. 1, except that the CDE line is no longer 
a straight line. Consequently, a more complicated definition of 
stretching functions has to be used, since the value of 0 on the 
CDE boundary is now, for each point, a function-of P and t; note, 

indeed, that the computational region expands as the precursor 
shock moves out, so that the points to be evaluated on the CDE 
boundary move in time along  such line. 

Receding of a part of the program was then necessary sin- 

ce now both X and Y are functions of P, e and t, whereas in (49), 
Ref.   1,   Y was a  function of 9  alone. 

In the first phase of the evolution, the grid so obtained 
looks promising and efficient (Fig. 6). Not the same can be said 

of the shock pattern. In fact, the most important shock, the one 
which originates as a consequence of the impact of the flow on 
the plate, runs now in the general direction of w=constant lines. 
The program, as originally written, is unable to fit it, as we 
can  see  from Fig.  7,  drawn at a  further  stage. 

10 



ihird attempt 

IV.   Third  attempt 

The code was then modified, reversing the role played by 
the coordinates in the calculation of the shock; this, of course, 
entails more than a simple switch of symbols, since the dimen- 
sions of P and o are different, and the stretching functions for 
X and Y are different too. In Fig. 8, we see that the shock re- 
flected by the wall does now appear, while the other shocks are 
replaced by sharp transitions. 

Unfortunately a new problem arises, as shown in Fig. 9. 
The lines here are w=constant coordinate lines. They tend to 
cluster around a point on the plate, with two catastrophic ef- 
fects: the reduction of the time step size to vanishingly small 
values, and a loss of resolution in the upper part of the figure 
(which, as is evident in Fig. 9, may even cause overlapping of 
mesh lines). 

The reason for it is that the point at infinity in the 

z^-plane maps on the point z^ (denoted by K in Fig. 5) in the 
z_-plane. The semi-infinite line issuing from D, which is the 
outer wall of the gun, is then mapped onto the circular arc, DK. 
When the precursor shock moves out with a quasi-circular shape in 
the physical plane, its image in the C-plane is, instead, quasi- 
rectangular (Fig. 10). This is due to the fact that, regardless 
of the motion of the shock alongside the barrel, its image cannot 
move any farther than point K in the C-plane. 

A brief, but formally complicated, attempt was made to 
correct the defect mentioned above, by using different values of 
o for different values of X, on any Y=constant line. An example 
of the grid is given in Fig. 11, and a plot of isobars appears in 
Fig. 12, definitively one of the best obtained so far. We inten- 
ded to use it in order to advance, at least, to a stage where the 
reflected shock had moved towards the side of the barrel, 
although we do not approve of such a choice of stretching. In- 
deed, it defies the purpose of using conformal mappings as much 
as    possible;    conformal    mappings    should be used to provide the 
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ihird attempt 

basic relations between pairs of coordinates, whereas stretchings 

should be limited to functions of a single variable, essentially. 

In addition, such a definition of stretching is very complicated, 

in contradiction with the principle that most of the complica- 

tions should be kept in the conformal mappings. 

In any event, even the new correction did not serve the 

purpose, because soon the determination of values in the vicinity 

of K exceeded the limits of accuracy of the computer. The compu- 

tation, which had started with promising results, had to be in- 

terrupted shortly after the stage shown in Fig. 12. 

V. Conclusions and recommendations 

It is clear that the gasdynamical portion of our codes is 

working well, and that such codes can provide reliable results. 

Comparisons of our computed flow patterns with shadowgraphs of 

actual experiments, provided by BRL, are very satisfactory. 

It is also clear, however, that a major reshaping of the 

code has to be undertaken, in order to provide efficient computa- 

tional grids. 

We propose to examine the possibility of using two grids 

for two different regions, with a seam as shown in Fig. 13. The 

upper grid, for the analysis of region ABCD, is the same as the 

one described in the second attempt. As soon as the precursor 

shock has crossed the BC line completely (at time t=t t say), the 

perturbed flow field below BC would be redefined on the lower 

grid. 

The latter can be generated by the following mapping 

function: 

z = t + 1 log j^  ,   t = [(A^+B)/(C+A)]
1/2 

with A and  B properly defined.     Typical grid  lines for this    map- 

12 



conclusions and recommendations 

ping are shown in Fig. 14. 

We would also perform the calculation with an improved 

treatment of shock waves, to account for shocks lying in any 

direction with respect to the mesh. Finally, we would speed up 

the calculation by eliminating most of the viscous code, accor- 

ding to our current computational philosophy. 

VI. References 

1. Moretti, G., A numerical analysis of muzzle blast 

precursor flow, POLY M/AE Rep. No. 80-10, 1980. 
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Figure 2.    Grid Distortion - Early Time 
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Figure 3. Grid Distortion - Median Time 
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Figure 4.    Grid Distortion - Late Time 
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Figure 6. Second Grid Distortion - Early Time 
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Figure 7. Second Grid Distortion 
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Figure 8. Shock Structure Predicted with Third Grid 
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Figure 9. e = Constant Coordinate Lines, Third Grid 
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Figure 10. Precursor Image in c - Plane 
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Figure 11.    Third Grid 
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Figure 12. Isobars Computed Using Third Grid 
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Figure 13. Proposed Double Grid Scheme 
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Figure 14.    Grid Lines 
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avoided, efficiencies achieved, etc.? If so, please elaborate. 

5.  General Comments (Indicate what you think should be changed to 
make this report and future reports of this type more responsive 
to your needs, more usable, improve readability, etc.)  

6.  If you would like to be contacted by the personnel who prepared 
this report to raise specific questions or discuss the topic, 
please fill in the following information. 

Name:  

Telephone Number:  

Organization Address;^  


